• 文献标题:   Porous architectures assembled with ultrathin Cu2O-Mn3O4 hetero-nanosheets vertically anchoring on graphene for high-rate lithium-ion batteries
  • 文献类型:   Article
  • 作  者:   PAN Y, XU M, YANG LY, YU MH, LIU HY, ZENG FY
  • 作者关键词:   graphene, heteronanosheet, porous architecture, high rate capability, lithiumion batterie
  • 出版物名称:   JOURNAL OF ALLOYS COMPOUNDS
  • ISSN:   0925-8388 EI 1873-4669
  • 通讯作者地址:   Jiangxi Normal Univ
  • 被引频次:   0
  • DOI:   10.1016/j.jallcom.2019.152969
  • 出版年:   2020

▎ 摘  要

A series of high-capacity transition metal oxides (TMOs) as anode materials suffer from poor cycling stability and limited rate capability for lithium-ion batteries (LIBs). To deal with these problems, many efforts have been undertaken on designing and fabricating composites based on TMOs. In this study, ultrathin Cu2O-Mn3O4 hetero-nanosheets are in-situ anchored on graphene (CM-GS composites) by combining a facile hydrothermal route and a subsequent calcination, constructing three-dimensional (3D) porous architectures. Investigated as LIB anodes, the porous architectures of CM-GS composites could effectively shorten ion/electron diffusion length and relieve volume changes, and the intimate incorporation between hetero-nanosheets and GS could significantly improve structural stability and electrical conductivity. Thanks to these synergetic advantages, CM-GS electrode delivers a high reversible capacity of 792 mA h g(-1) after 350 cycles at 2500 mA g(-1) with 120% capacity retention, and a reversible capacity up to 739 mAhg(-1) at 5000 mAg(-1) is obtained even after 280 cycles at different current rates, revealing excellent cycling stability and superior rate capability. These results suggest that CM-GS composites are promising anode materials for high-rate LIBs, and this work could provide an efficient strategy for the construction of hetero-structure on conductive substrates with remarkable energy-storage properties for next-generation LIBs. (C) 2019 Elsevier B.V. All rights reserved.