▎ 摘 要
Composites of low-density polyethylene (LDPE), ethylene vinyl acetate (EVA), and a graphene-like material were explored for their electrical properties for use in high-volume low-cost conductive applications. A graphene-like material, obtained from hybrid clay-sucrose carbonization, was investigated as an alternative filler with advantages over conventional graphene technology. The electrical properties of the composites as synthesized by the solvent-casting technique were studied using broadband dielectric spectroscopy. The percolation threshold was identified for both as synthesized and annealed composite samples. Due to charge transport and electrode polarization, the sub-percolating composites exhibited low frequency dispersion particularly at elevated temperatures. Composites of LDPE/EVA/graphene-like above the percolation threshold exhibited a higher rheological storage modulus and thermal stability which indicates an alignment between the electrical, thermal and rheological properties.