▎ 摘 要
We directly correlate the local (20 nm scale) and global electronic properties of a device containing mono-, bi- and tri-layer epitaxial graphene (EG) domains on 6H-SiC (0001) by simultaneously performing local surface potential measurements using Kelvin probe force microscopy and global transport measurements. Using well-controlled environmental conditions we investigate the doping effects of N-2, O-2, water vapour and NO2 at concentrations representative of the ambient air. We show that presence of O-2, water vapour and NO2 leads to p-doping of all EG domains. However, the thicker layers of EG are significantly less affected. Furthermore, we demonstrate that the general consensus of O-2 and water vapour present in ambient air providing majority of the p-doping to graphene is a common misconception. We experimentally show that even the combined effect of O-2, water vapour, and NO2 at concentrations higher than typically present in the atmosphere does not fully replicate p-doping from ambient air. Thus, for EG gas sensors it is essential to consider naturally occurring environmental effects and properly separate them from those coming from targeted species.