• 文献标题:   Theoretical assessment of graphene-metal contacts
  • 文献类型:   Article
  • 作  者:   JANTHON P, VINES F, KOZLOV SM, LIMTRAKUL J, ILLAS F
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF CHEMICAL PHYSICS
  • ISSN:   0021-9606 EI 1089-7690
  • 通讯作者地址:   Univ Barcelona
  • 被引频次:   45
  • DOI:   10.1063/1.4807855
  • 出版年:   2013

▎ 摘  要

Graphene-metal contacts have emerged as systems of paramount importance in the synthesis of high-quality and large-size patches of graphene and as vital components of nanotechnological devices. Herein, we study the accuracy of several density functional theory methods using van der Waals functionals or dispersive forces corrections when describing the attachment of graphene on Ni(111). Two different experimentally observed chemisorption states, top-fcc and bridge-top, were put under examination, together with the hcp-fcc physisorption state. Calculated geometric, energetic, and electronic properties were compared to experimental data. From the calculations, one finds that (i) predictions made by different methodologies differ significantly and (ii) optB86b-vdW functional and Grimme dispersion correction seem to provide the best balanced description of stability of physisorption and chemisorption states, the attachment strength of the latter on Ni(111) surface, the graphene-Ni(111) separation, and the bandstructure of chemisorbed graphene. The collation suggests that accurate and affordable theoretical studies on technologies based on graphene-metal contacts are already at hand. (C) 2013 AIP Publishing LLC.