▎ 摘 要
Three-dimensional (3D) interpenetrating network graphene/copper (G/Cu) composites were fabricated by in-situ growth of G on nanoporous Cu followed by rolling and sintering processes. In-situ growth of G network generate an intimate interface between G and Cu matrix, which is not only essential for high load transfer efficiency but also minimize the interfacial resistance. Moreover, the 3D interpenetrating network structure is propitious to fully exert the additional electronic transport pathway and loadbearing of 3D G, as well as helping to generate and store dislocation without initiating cracks. Consequently, the obtained composite exhibits an elegant combination of enhanced tensile strength (354 MPa), extraordinary ductility (16.5% elongation) and robust conductivity (98% IACS). (C) 2018 Elsevier B.V. All rights reserved.