• 文献标题:   Electronic doping of graphene by deposited transition metal atoms
  • 文献类型:   Article
  • 作  者:   SANTOS JE, PERES NMR, DOS SANTOS JMBL, NETO AHC
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   Max Planck Inst Chem Phys Solids
  • 被引频次:   29
  • DOI:   10.1103/PhysRevB.84.085430
  • 出版年:   2011

▎ 摘  要

We perform a phenomenological analysis of the problem of the electronic doping of a graphene sheet by deposited transition metal atoms, which aggregate in clusters. The sample is placed in a capacitor device such that the electronic doping of graphene can be varied by the application of a gate voltage and such that transport measurements can be performed via the application of a (much smaller) voltage along the graphene sample, as reported in the work of Pi et al. [Phys. Rev. B 80, 075406 (2009)]. The analysis allows us to explain the thermodynamic properties of the device, such as the level of doping of graphene and the ionization potential of the metal clusters, in terms of the chemical interaction between graphene and the clusters. We are also able, by modeling the metallic clusters as perfectly conducting spheres, to determine the scattering potential due to these clusters on the electronic carriers of graphene and hence the contribution of these clusters to the resistivity of the sample. The model presented is able to explain the measurements performed by Pi et al. on Pt-covered graphene samples at the lowest metallic coverages measured, and we also present a theoretical argument based on the above model that explains why significant deviations from such a theory are observed at higher levels of coverage.