• 文献标题:   Microspheres comprise Si nanoparticles modified with TiO2 and wrapped by graphene as high-performance anode for lithium-ion batteries
  • 文献类型:   Article
  • 作  者:   WANG ZY, XU ZG, YUAN YP, TENG XH, PU ZP, WANG YY, FU AP, GUO YG, LI HL
  • 作者关键词:   silicon, titanium dioxide, spray drying, bilayer modification, lithiumion battery
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:  
  • 被引频次:   9
  • DOI:   10.1016/j.apsusc.2022.153790 EA JUN 2022
  • 出版年:   2022

▎ 摘  要

Pomegranate shaped microspheres consisting of Si nanoparticles coated with a TiO2 shell and wrapped with reduced graphene oxide sheets (Si@TiO2@rGO) have been designed and fabricated. A sol-gel method is applied to coat the Si nanoparticles with a TiO2 shell. An electrostatic interaction assisted spray drying process combined with a calcination step have been explored to achieve the wrapping of graphene and the formation of the pomegranate shaped microspheres. The layer of anatase phase TiO2 shows a higher strength to withstand the structural deformation of Si. The new phase derived from the TiO2 layer after the lithium embedding can acted as high-speed diffusion channels for lithium ions. The formation of the porous microspheres provided adaptive space for volume expansion of Si, while the wrapping of the Si@TiO(2)nanoparticles with flexible graphene relieves the internal stress and further improves the conductivity of the Si electrode. The synergistic effects of the bilayer endow the Si@TiO2@rGO composite a superior reversible capacity of 1228.7 mAh g(-1) after 400 cycles at a current density of 0.5 A g(-1) and an excellent cycling stability of 776 mAh g(-1) after 1000 cycles at a high current density of 1 A g(-1).