• 文献标题:   Impurity Substitution Enhances Thermoelectric Figure of Merit in Zigzag Graphene Nanoribbons
  • 文献类型:   Article
  • 作  者:   AKBARABADI SR, ASL MM
  • 作者关键词:  
  • 出版物名称:   ADVANCES IN CONDENSED MATTER PHYSICS
  • ISSN:   1687-8108 EI 1687-8124
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1155/2021/8110754
  • 出版年:   2021

▎ 摘  要

The thermoelectric properties of zigzag graphene nanoribbons (ZGNRs) are sensitive to chemical modification. In this study, we employed density functional theory (DFT) combined with the nonequilibrium green's function (NEGF) formalism to investigate the thermoelectric properties of a ZGNR system by impurity substitution of single and double nitrogen (N) atoms into the edge of the nanoribbon. N-doping changes the electronic transmission probability near the Fermi energy and suppresses the phononic transmission. This results in a modified electrical conductance, thermal conductance, and thermopower. Ultimately, simultaneous increase of the thermopower and suppression of the electron and phonon contributions to the thermal conductance leads to the significant enhancement of the figure of merit in the perturbed (i.e., doped) system compared to the unperturbed (i.e., nondoped) system. Increasing the number of dopants not only changes the nature of transport and the sign of thermopower but also further suppresses the electron and phonon contributions to the thermal conductance, resulting in an enhanced thermoelectric figure of merit. Our results may be relevant for the development of ZGNR devices with enhanced thermoelectric efficiency.