▎ 摘 要
In the past two years, three-dimensional graphene (3DG) was introduced to the environmental treatment area as a promising new material. Despite much progress in its synthesis and applications, 3DG is still limited in terms of green large-scale synthesis and practical environmental applications. In this work, a 3DG synthetic method was developed at 95 degrees C in an EDTA-induced self-assembly process. Because little EDTA was found to be consumed during synthesis, which might be due to its great stability and poor reducibility, 3DG with complete structure can be successively obtained by reusing the EDTA solution more than 10 times. Furthermore, 3DG was found to possess a superior adsorption capacity of 119 mg g(-1) (pH 6.0) for paraquat, a highly toxic herbicide with positive charges and a conjugated system of p bonds in its molecular structure. The adsorption capacity was much higher than those in classic paraquat adsorbents, such as clay and activated carbon. To address the problem of 3DG damage by stirring, a pyramid-shaped nylon teabag was adopted to protect the soft hydrogel during the repeated adsorption-desorption processes. After five cycles, the 3DG teabag still maintained 88% of the initial adsorption capacity. This facile method may be easily applied in other environmental treatment conditions.