▎ 摘 要
We demonstrate the synthesis of a sandwich-like nanocomposite by planting rutile TiO2 nanorods onto reduced graphene oxide (RGO) via a modified seed-assisted hydrothermal growth method. The synthetic process consists of functionalization of graphene oxide (GO), followed by hydrolytic deposition of TiO2 nanoparticles on GO and reduction, and finally hydrothermal growth of rutile TiO2 nanorods on RGO. The resultant nanocomposite, i.e. rutile TiO2 nanorod arrays on RGO (TONRAs-RGO), exhibits largely enhanced reversible charge-discharge capacity and rate capability compared to bare TiO2 nanorods (TONRs) due to its unique structure and superior conductivity. The rate performance of the nanocomposite is also better than that of anatase TiO2 nanoparticles. This study will inspire better design of RGO-based nanocomposites for high energy density lithium-ion battery applications.