▎ 摘 要
We report a stable palladium/graphene (Pd/G) nanocomposite with differing Pd content for use in the catalytic hydrogenation of nitrophenols and nitrotoluenes. Various microscopic and spectroscopic techniques were employed to characterize the as-prepared catalysts. Catalytic hydrogenation reactions of nitrophenols were conducted in aqueous solution by adding NaBH4, while the nitrotoluene hydrogenation was carried out in methanol in the presence of H-2 because of the poor solubility in water. The Pd/G hybrids exhibited much higher activity and higher stability than the commercial Pd/C. Due to the presence of a large excess of NaBH4 compared to p-nitrophenol, the kinetic data can be explained by the assumption of a pseudo-first-order reaction with regard to p-nitrophenol. The resulting high catalytic activity can be attributed to the graphene sheets' strong dispersion effect for Pd nanoparticles and good adsorption ability for nitrobenzene derivatives via pi-pi stacking interactions. A plausible mechanism is proposed. Considering inductive and conjugation effects that may affect the reactions, the reactivity of nitrophenols in this study is expected to follow the order m-NP > o-NP > p-NP > 2,4-DNP > 2,4,6-TNP, which is in good agreement with the experimental results.