▎ 摘 要
High-ring polycyclic aromatic hydrocarbons (PAHs, Benzo[b]fluorathene (BbFA), etc.) are difficult to biodegrade in the water environment. To address this issue, an innovative method for the preparation of MnO2 nanoflower/graphene oxide composite (MnO2 NF/GO) was proposed for adsorption removal of BbFA. The physicochemical properties of MnO2 NF/GO were characterized by SEM, TEM, XRD, and N-2 adsorption/desorption and XPS techniques. Results show that the MnO2 NF/GO had well-developed specific surface area and functional groups. Batch adsorption experiment results showed that adsorption capacity for BbFA was 74.07 mg/g. The pseudo-second-order kinetic model and Freundlich isotherm model are fitted well to the adsorption data. These show electron-donor-acceptor interaction; especially pi-pi interaction and pi complexation played vital roles in BbFA removal onto MnO2 NF/GO. The study highlights the promising potential adsorbent for removal of PAHs.