▎ 摘 要
A series of crystalline shape memory polyurethanes (SMPUs) were synthesized from polycaprolactone diols and 4,4'-methylenedicyclohexyl diisocyanate (H12MDI) with chemical incorporation of allyl isocyanate modified graphene oxide (iGO) into the PU. Actuation of hybrid SMPUs by infrared (IR) absorption of iGO as well as the direct heat actuated SMPUs has been studied in terms of the isothermal crystallization rate, near-IR absorption, and thermal, mechanical, and shape memory properties. It was found that iGO functions as a multifunctional cross-linker at low contents and a nucleating agent at high contents, and as a reinforcing filler, while light absorption by the iGO induced melting of the PU soft segment, giving rise to a shape recovery of over 90% at 1% iGO (G10).