▎ 摘 要
A graphene nanosheet modified glassy carbon electrode (GN/GCE) is proposed as a voltammetric sensor for ferulic acid with good sensitivity, selectivity and reproducibility. The sensor oxidizes ferulic acid in a surface-confined and quasi-reversible process, as revealed by cyclic voltammetry. The results show more favorable electron transfer kinetics than for a bare glassy carbon electrode (GCE). The linear response of the sensor is from 5 x 10(-7) to 5 x 10(-5) M with a detection limit of 2 x 10(-7) M (S/N = 3). Graphene, as a single nanosheet, shows more favorable electrochemical activity and should be a more robust and advanced carbon electrode material, which provides a promising platform for electrochemical sensors and biosensors. The method was successfully applied to the detection of ferulic acid in pharmaceutical tablets with satisfactory results.