• 文献标题:   An all two-dimensional vertical heterostructure graphene/CuInP2S6/MoS2 for negative capacitance field effect transistor
  • 文献类型:   Article
  • 作  者:   LIAQAT A, YIN YH, HUSSAIN S, WEN W, WU JX, GUO YZ, DANG CH, HO CH, LIU Z, YU P, CHENG ZH, XIE LM
  • 作者关键词:   twodimensional material, van der waals heterostructure, ferroelectric, field effect transistor, graphene
  • 出版物名称:   NANOTECHNOLOGY
  • ISSN:   0957-4484 EI 1361-6528
  • 通讯作者地址:  
  • 被引频次:   4
  • DOI:   10.1088/1361-6528/ac4063
  • 出版年:   2022

▎ 摘  要

As scaling down the size of metal oxide semiconductor field-effect transistors (FETs), power dissipation has become a major challenge. Lowering down the sub-threshold swing (SS) is known as an effective technique to decrease the operating voltage of FETs and hence lower down the power consumption. However, the Boltzmann distribution of electrons (so-called 'Boltzmann tyranny') implements a physical limit to the SS value. Use of negative capacitance (NC) effect has enabled a new path to achieve a low SS below the Boltzmann limit (60 mV dec(-1) at room temperature). In this work, we have demonstrated a NC-FET from an all two-dimensional (2D) metal ferroelectric semiconductor (MFS) vertical heterostructure: Graphene/CuInP2S6/MoS2. The negative capacitance from the ferroelectric CuInP2S6 has enabled the breaking of the 'Boltzmann tyranny'. The heterostructure based device has shown steep slopes switching below 60 mV dec(-1) (lowest to < 10 mV dec(-1)) over 3 orders of source-drain current, which provides an avenue for all 2D material based steep slope FETs.