• 文献标题:   Phonon thermal transport in a graphene/MoSe2 van der Waals heterobilayer
  • 文献类型:   Article
  • 作  者:   HONG Y, JU MG, ZHANG JC, ZENG XC
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076 EI 1463-9084
  • 通讯作者地址:   Univ Nebraska
  • 被引频次:   8
  • DOI:   10.1039/c7cp06874c
  • 出版年:   2018

▎ 摘  要

Combining the best of different monolayers in one ultimate van der Waals (vdW) heterostructure is an appealing approach for practical applications. Recently, a graphene (GR) and molybdenum diselenide (MoSe2) heterobilayer was successfully fabricated experimentally. The superior electrical conductivity of GR combined with the unique photoelectrical properties and direct bandgap of MoSe2 can yield many potential applications, such as Li-ion batteries, tunneling field effect transistors and two-dimensional non-volatile memory devices. Efficient heat conduction within the device components is of great importance for nanoelectronic performance. In this work, the cross-plane interfacial thermal resistance (R) and in-plane thermal conductivity (k) of the GR/MoSe2 vdW heterobilayer are systematically investigated using classical molecular dynamics (MD) simulations. The predicted R at a temperature of 300 K is equal to 1.91 x 10(-7) K m(2) W-1. Effects of several modulators such as temperature, contact pressure and vacancy defects are evaluated, which are all found to have negative correlations with the calculated interfacial thermal resistance. The highest reduction of R amounts to 75% for doubled coupling strength between GR and MoSe2. Spectral energy density (SED) and phonon density of states (Ph-DOS) analyses are performed to gain further insights into the phonon properties of GR and MoSe2. Our study provides reasonable guidelines to increase heat dissipation efficiency for future GR/MoSe2 based applications.