• 文献标题:   3D Graphene-based macro-mesoporous frameworks as enzymatic electrodes
  • 文献类型:   Article
  • 作  者:   SHEN L, YING J, REN L, YAO Y, LU Y, DONG Y, TIAN G, YANG XY, SU BL
  • 作者关键词:   3d graphene, macromesoporous nanostructure, hierarchical carbon material, glucose oxidase, electrochemical propertie
  • 出版物名称:   JOURNAL OF PHYSICS CHEMISTRY OF SOLIDS
  • ISSN:   0022-3697 EI 1879-2553
  • 通讯作者地址:   Wuhan Univ Technol
  • 被引频次:   2
  • DOI:   10.1016/j.jpcs.2019.02.007
  • 出版年:   2019

▎ 摘  要

An efficient method was developed to fabricate three-dimensional (3D) graphene-based nanomaterials with hierarchical macro-mesoporous structures as novel enzymatic electrode materials. The 3D continuously interconnected macropores were generated by hydrothermal self-assembly of graphene oxide sheets to form 3D graphene-based frameworks, and uniform mesopores on the surface of graphene frameworks were obtained by replicating the previously synthesized mesoporous silica. Due to the integration of macropores that can promote the efficiency of mass transfer, and mesopores that can facilitate enzyme immobilization and electron transfer, the unique 3D graphene-based macro-mesoporous frameworks with narrow mesopore size distribution, large surface area and high electrical conductivity can be applied as an excellent platform to immobilize glucose oxidase as enzymatic electrodes, displaying enhanced glucose-sensing properties. This approach can be utilized to fabricate various 3D hierarchical macro-mesoporous nanomaterials for application in a broad range of sensors, supercapacitors, batteries and catalysis.