• 文献标题:   Charge transfer at carbon nanotube-graphene van der Waals heterojunctions
  • 文献类型:   Article
  • 作  者:   LIU YD, WANG FQ, LIU YJ, WANG XZ, XU YB, ZHANG R
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Nanjing Univ
  • 被引频次:   15
  • DOI:   10.1039/c6nr03965k
  • 出版年:   2016

▎ 摘  要

Carbon nanotubes and graphene are two most widely investigated low-dimensional materials for photonic and optoelectronic devices. Combining these two materials into all-carbon hybrid nanostructures has shown enhanced properties in a range of devices, such as photodetectors and flexible electrodes. Interfacial charge transfer is the most fundamental physical process that directly impacts device design and performance, but remains a subject less well studied. Here, we complemented Raman spectroscopy with photocurrent probing, a robust way of illustrating the interfacial built-in fields, and unambiguously revealed both static and dynamic (photo-induced) charge transfer processes at the nanotube-graphene interfaces. Significantly, the effects of nanotube species, i.e. metallic as opposed to semiconducting, are for the first time compared. Of all the devices examined, the graphene sheet was found to be p-type doped with (6, 5) chirality-enriched semiconducting SWNTs (s-SWNTs), while n-type doped with highly pure (>99%) metallic SWNTs (m-SWNTs). Our results provide important design guidelines for all-carbon hybrid based devices.