▎ 摘 要
A novel kind of paraffin-based shape-stable phase change materials (SSPCMs) was prepared by introducing paraffin into reduced graphene oxide (rGO)/carbon nanotubes (CNTs) aerogel via vacuum-assisted impregnation method. The effects of ratio of rGO to CNTs in 3D network structure on morphology, structure and property of paraffin-based SSPCMs were investigated. The rGO/CNTs 3D network structure with high thermal conductivity, served as thermally conductive skeleton together. In particular, CNTs was used as a secondary heat conductive filler, which could be well dispered in the SSPCMs to conduct heat synergistically. The SSPCMs exhibited high thermal conductivity and excellent shape-stability. And the thermal conductivity of SSPCMs can be regulated by adjusting the ratio of rGO to CNTs in aerogels. These results indicate that 3D rGO/CNTs aerogels have advantages as thermally conductive skeleton, and can endow phase transition materials with stable shape, so as to realize the application of phase change materials in the field of heat dissipation.