▎ 摘 要
We address the structural and electronic properties of graphene nanoribbons (GNRs) covalently immobilized on a metallic substrate by means of an organic layer. The GNR-organic layer and organic layer-metal interfaces can be thought of as constituents of a nanodevice and have been accurately studied using large-scale density functional theory calculations. Our results demonstrate the possibility of combining nanopatterned metal-organic layer substrates with selected GNRs to obtain well ordered and stable structures while preserving the GNR energy band gap, an essential requirement for any switching nanodevice.