• 文献标题:   Binder-free high-performance Fe(3)O(4)fine particles in situ grown onto N-doped porous graphene layers co-embedded into porous substrate as supercapacitor electrode
  • 文献类型:   Article
  • 作  者:   BARMI AAM, AGHAZADEH M, MOOSAVIAN MA, GOLIKAND AN
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS SCIENCEMATERIALS IN ELECTRONICS
  • ISSN:   0957-4522 EI 1573-482X
  • 通讯作者地址:   Nucl Sci Technol Res Inst NSTRI
  • 被引频次:   0
  • DOI:   10.1007/s10854-020-04085-0 EA AUG 2020
  • 出版年:   2020

▎ 摘  要

It has repeatedly been reported that low conductivity of iron oxide as a major challenge limited its supercapacitive application, where compositing Fe(3)O(4)with carbonaceous nanomaterial can be considered as excellent solution strategy. In this paper, we report Fe(3)O(4)nanoparticles electrochemically deposited on graphene oxide sheets as high-performance nanocomposite for energy storage applications. Iron oxide nanoparticles (Fe3O4) are cathodically decorated on N-doped porous graphene (N-PG) nanosheets. The prepared pristine and nanocomposite materials were characterized by FT-IR, Raman, XRD, BET, TEM, FE-SEM, EDS, as well as TGA/DSC techniques. The electrochemical properties of resulting Fe3O4/Ni foam and Fe3O4@N-PG/Ni foam electrodes were investigated through CV, GCD, and EIS techniques, and the obtained data showed that the fabricated hybrid electrode (i.e., Fe3O4@N-PG/Ni foam) is enable to present specific capacitance values s as high as 822 and 631 F g(-1)at the 0.5 and 10 A g(-1), respectively, where the pristine Fe3O4/Ni foam electrode showed 279 and 131 F g(-1)at the 0.5 and 10 A g(-1). Furthermore, the hybrid Fe3O4@N-PG/Ni foam electrode showed excellent cycling ability, good high rate, and higher energy density as compared with the Fe3O4/Ni foam electrode. These enhancements were assigned to the synergetic contributions between N-doped porous graphene sheets and iron oxide particles, which mainly results from the rational architecture of N-PG nanosheets and Fe(3)O(4)nanoparticles provided by the applied synthetic route.