▎ 摘 要
We designed a series of porous graphene as the separation membrane for hydrogen gas in coal gas. The permeation process of different gas molecules (H-2, CO, CH4, and H2S) in porous graphene was evaluated under the atmospheric pressure and high pressure conditions. Our results indicate the hydrogen permeability and selectivity could be tuned by the size and the shape of the porous graphene. For graphene with bigger pores, the selectivity for hydrogen gas could decrease. In the porous graphene with same pore area, the hydrogen gas selectivity could be affected by the shape of the pore. The potential of mean force (PMF) of different gases to pass through a good separation candidate was calculated. The order of PMF for different gases to pass through the good separation candidate is H-2 < CO < CH4 approximate to H2S, which is also confirmed by the first-principle density function theory (DFT) calculation.