▎ 摘 要
Using Maxwell's equations for the incoming and outgoing electromagnetic field, in interaction with a metallic arm-chair graphene nanoribbon (AGNR), and the relationship between the density-density response function and the conductivity, we study surface plasmons (SPs) in a AGNR following the Lindhard, random-phase approximation (RPA), and Hubbard approaches. For transverse magnetic (TM) modes we obtain analytical dispersion relations (DRs) valid for q 0 there is a small but noticeable difference between the DRs of the three approaches. In this limit the respective, scattering-free conductivities differ drastically from those obtained when scattering by impurities is included. We demonstrate that the SP field is proportional to the square of the quality factor Q. The reflection amplitude shows that metallic AGNRs do not support Brewster angles. In addition, AGNRs do not support transverse electric (TE) SPs. (C) 2017 Optical Society of America