▎ 摘 要
Here, we report the enhanced optical and electrical properties of graphene oxide-silver nanoparticles (GO-AgNPs) nanocomposite due to thermal annealing in air at different temperatures (150, 250, and 350 degrees C). Our findings show that the optical properties of the GO-AgNPs film strongly depend on the annealing temperature. With an increase in annealing temperature, the optical absorption band and photoluminescence (PL) band are monotonically shifted towards a longer wavelength with a slight increase in absorbance. Interestingly, annealing of the nanocomposite film at 350 degrees C in the air results in the nitrogen-doping from air into GO lattice. Unlike the PL bands in the near-ultraviolet (UV) range in cases of GO-AgNPs annealed at 150 and 250 degrees C, this film exhibits pronounced multiple PL bands in the visible range, which are attributed to optical transitions associated with the localized nitrogen defects incorporated from air under thermal annealing and charge transfer between AgNPs and carbon. Mechanisms of the observed optical properties are also discussed. Furthermore, thermal annealing of the film also affects its electrical properties. The sheet resistance of the film reduces with the increase of annealing temperature and its lowest value similar to 21 Omega/square with transmittance similar to 82% at 550 nm is achieved at 350 degrees C.