▎ 摘 要
In this work, we have investigated the applicability of graphene nanoribbon (GNR) as the interconnects for 16-nm ITRS technology node. GNR is proposed as the possible alternative to the traditional copper (Cu)-based interconnect systems in nanometer regime. In this paper, we have performed important studies on GNR for its applicability as power and signal interconnects. For the application of power interconnects, we have investigated the power supply voltage drop (IR drop) and simultaneous switching noise (SSN) in graphene-based interconnect system. We have performed crosstalk noise and overshoot/undershoot analyses for the application of signal interconnects. The results are compared with that of the traditional Cu-based interconnects. The results show that GNR is better than Cu as far as IR drop, SSN, gate oxide reliability and hot carrier reliability are concerned. Our investigation reveals that GNR can be better than the Cu interconnects from all aspects with a multilayer GNR structure. The present graphene-based interconnect technology needs to be advanced, so that the metal-graphene contact resistance is minimized and multilayer GNR structure with large number of graphene layers is supported.