▎ 摘 要
Ripples naturally occur in graphene sheets. First-principles calculations reveal that, by altering the pyramidalization angles of the carbon atoms, these ripples can be used to direct the chemical reactivity of graphene towards hydrogenation. A fraction of the carbon atoms of a rippled graphene, located around the crests and troughs, show significantly increased reactivity. The remaining carbon atoms have comparable reactivity to those in a flat graphene. To illustrate the increased reactivity, we show that hydrogenation becomes exothermic when the characteristic ratio between the amplitude and wavelength reaches similar to 0.55. This finding offers a practical chemical venue for regioselectivity control of graphene functionalization. While the rippling does not directly affect the band gap of the graphene, the rippling-induced hydrogenation does.