▎ 摘 要
The graphene oxide (GO) nanosheets were produced by chemical conversion of graphite, and were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR). An electrochemical sensor based on Ni/graphene (GR) composite film was developed by incorporating Ni2+ into the graphene oxide film modified glassy carbon electrode (Ni/GO/GCE) through the electrostatic interactions with negatively charged graphene oxide. The Ni2+/graphene modified glassy carbon electrode (Ni/GR/GCE) was prepared by cyclic voltammetric scanning of Ni/GO/GCE in the potential range from -1.5 to 0.2 V at 50 mV s(-1) for 5 cycles. The electrochemical activity of Ni/GR/GCE was illustrated in 0.10 M NaOH using cyclic voltammetry. The Ni/GR/GCE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple. The introduction of conductive graphene not only greatly facilitates the electron transfer of Ni2+, but also dramatically improves the long-term stability of the sensor by providing the electrostatic interactions. Ni/GR/GCE also shows good electrocatalytic activity toward the oxidation of glucose. The Ni/GR/GCE gives a good linear range over 10 to 2700 mu M with a detection limit of 5 mu M towards the determination of glucose by amperometry. This sensor keeps over 85% activity towards 0.1 mM glucose after being stored in air for a month, respectively. Furthermore, the modified sensor was successfully applied to the sensitive determination of glucose in blood samples.