▎ 摘 要
Structural manipulation at the nanoscale breaks the intrinsic correlations among different ener gy carrier transport properties, achieving high thermoelectric performance. However, the coupled multifunctional (phonon and electron) transport in the design of nanomaterials makes the optimization of thermoelec-tric properties challenging. Machine learning brings convenience to the design of nanostructures with large degree of freedom. Herein, we conducted comprehensive thermoelectric optimization of isotopic armchair graphene nanoribbons (AGNRs) with antidots and interfaces by combining Green's function ap-proach with machine learning algorithms. The optimal AGNR with ZT of 0.894 by manipulating antidots was obtained at the interfaces of the aperiodic isotope superlattices, which is 5.69 times larger than that of the pristine structure. The proposed optimal structure via machine learning provides physical insights that the carbon-13 atoms tend to form a continuous interface barrier perpendicular to the carrier trans-port direction to suppress the propagation of phonons through isotope AGNRs. The antidot effect is more effective than isotope substitution in improving the thermoelectric properties of AGNRs. The proposed approach coupling energy carrier transport property analysis with machine learning algorithms offers highly efficient guidance on enhancing the thermoelectric properties of low-dimensional nanomaterials, as well as to explore and gain non-intuitive physical insights.(c) 2022 Elsevier Ltd. All rights reserved.