• 文献标题:   Laser-Induced Graphene-PVA Composites as Robust Electrically Conductive Water Treatment Membranes
  • 文献类型:   Article
  • 作  者:   THAKUR AK, SINGH SP, KLEINBERG MN, GUPTA A, ARNUSCH CJ
  • 作者关键词:   laserinduced graphene, poly vinyl alcohol, surface modification, crosslinking, antifouling, ultrafiltration
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Ben Gurion Univ Negev
  • 被引频次:   9
  • DOI:   10.1021/acsami.9b00510
  • 出版年:   2019

▎ 摘  要

Graphene nanomaterials can feature both superb electrical conductivity and unique physical properties such as extreme surface wettability, which are potentially applicable for many purposes including water treatment. Laser-induced graphene (LIG) is an electrically conductive three-dimensional porous carbon material prepared by direct laser writing on various polymers in ambient conditions with a CO2 laser. Low-fouling LIG coatings in water technology have been reported; however, the mechanical strength and the separation properties of LIG-coated membranes are limited. Here, we show mechanically robust electrically conductive LIG poly(vinyl alcohol) (PVA) composite membranes with tailored separation properties suitable for ultrafiltration processes. PVA has outstanding chemical and physical stability with good film-forming properties and is a biocompatible and nontoxic polymer. Compared to LIG-coated filters, the PVA LIG composite membrane filters exhibited up to 63% increased bovine serum albumin rejection and up to similar to 99.9% bacterial rejection, which corresponded well to the measured molecular weight cutoff similar to 90 kDa. Compared to LIG fabricated on a polymer membrane control, the composite membranes showed similar excellent antifouling properties including low protein adsorption, and the antibiofilm effects were more pronounced at lower PVA concentrations. Notably for the antibacterial capabilities, the LIG-supporting layer maintained its electrical conductivity and a selected LIG-PVA composite used as electrodes showed complete elimination of mixed bacterial culture viability and indicated that the potent antimicrobial killing effects were maintained in the composite. This work demonstrates that the use of LIG for practical industrial filtration applications is possible.