• 文献标题:   Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed -oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production
  • 文献类型:   Article
  • 作  者:   MIDDELKOOP V, SLATER T, FLOREA M, NEATU F, DANACI S, ONYENKEADI V, BOONEN K, SAHA B, BARAGAU LA, KELLICI S
  • 作者关键词:   cerialanthanazirconia graphene oxide, nanocomposite catalyst, continuous hydrothermal flow synthesi, directwrite 3d printing, propylene carbonate, co2 utilisation, green synthesi
  • 出版物名称:   JOURNAL OF CLEANER PRODUCTION
  • ISSN:   0959-6526 EI 1879-1786
  • 通讯作者地址:   Flemish Inst Technol Res VITO
  • 被引频次:   11
  • DOI:   10.1016/j.jclepro.2018.12.274
  • 出版年:   2019

▎ 摘  要

A rapidly-growing 3D printing technology is innovatively employed for the manufacture of a new class of heterogenous catalysts for the conversion of CO2 into industrially relevant chemicals such as cyclic carbonates. For the first time, directly printed graphene-based 3D structured nanocatalysts have been developed combining the exceptional properties of graphene and active CeZrLa mixed-oxide nano particles. It constitutes a significant advance on previous attempts at 3D printing graphene inks in that it does not merely explore the printability itself, but enhances the efficiency of industrially relevant reactions, such as CO2 utilisation for direct propylene carbonate (PC) production in the absence of organic solvents. In comparison to the starting powder, 3D printed GO-supported CeZeLa catalysts showed improved activity with higher conversion and no noticeable change in selectivity. This can be attributed to the spatially uniform distribution of nanoparticles over the 2D and 3D surfaces, and the larger surface area and pore volume of the printed structures. 3D printed GO-supported CeZeLa catalysts compared to unsupported 3D printed samples exhibited higher selectivity and yield owing to the great number of new weak acid sites appearing in the supported sample, as observed by NH3-TPD analysis. In addition, the catalyst's facile separation from the product has the capacity to massively reduce materials and operating costs resulting in increased sustainability. It convincingly shows the potential of these printing technologies in revolutionising the way catalysts and catalytic reactors are designed in the general quest for clean technologies and greener chemistry. 2019 Elsevier Ltd. All rights reserved.