▎ 摘 要
Graphene and graphene oxide (GO) in solution were directly observed by a newly developed twilight fluorescence (TwiF) microscopy. A nanocarbon dispersion was mixed with a highly concentrated fluorescent dye solution and placed in a cell with a viewing glass at the bottom. TwiF microscopy images the nanocarbon material floating within a few hundred pm of the glass surface by utilizing two optical processes to provide a faintly illuminating backlight and visualizes GO as either a dark image by absorption and energy transfer processes or a bright image by alternation of fluorophore chemistry and autofluorescence. Individual graphene and GO sheets ranging from submicron to submillimeter widths were clearly imaged at different wavelengths, which were selectable based on the dye used. Graphene could be differentiated from GO coexisting in the same solution. Partial transparency revealed layering and network structures. Motions in tumbling flow were recognized in real time. An effect of changing the solvent and the process of adhesion on the glass surface were followed in situ.