▎ 摘 要
Graphene has attracted growing interest in the past few years. Growing vertically oriented graphene sheets with a designed pattern is practically attractive for device applications based on graphene. Here we report a patterned synthesis of vertical graphene nanosheets using plasma-enhanced chemical vapor deposition. Both experimental and modeling results suggest that the electric field distribution above the substrate material plays a key role in the graphene coverage. Vertical graphene patterns can thus be designed through artificially designing the surface electric field distribution. A field-effect transistor (FET) sensor device has been demonstrated for detection of low-concentration gases using vertically patterned graphene sheets bridging a metal electrode gap.