▎ 摘 要
The quest for novel low-dimensional materials has led to the discovery of graphene and thereafter, a tremendous attention has been paved in designing of its fascinating properties aiming in fabricating electronic devices. Using first-principles calculations, we study the structure, energetic and electronic as well as magnetic properties of graphene induced by the interactions in presence of both external and internal foreign agents in detail. We find that a variety of tunable electronic states, e.g., semiconductor-to-half-metal-to-metal and magnetic behaviors can be achieved under such hierarchical interactions and their influence. We also find that the nature and compositions of foreign substances play a key role in governing the electro-magnetic characteristics of these nanomaterials. In this review, we suggest a few routes for engineering the tunable graphene properties suitable for future electronic device applications.