▎ 摘 要
With a notable advantage in terms of capacity, molybdenum disulfide has been considered a promising anode material for building high-energy-density lithium-ion batteries. However, its intrinsically low electronic conductivity and unstable electrochemistry lead to poor cycling stability and inferior rate performance. We herein describe the scalable assembly of free-standing MoS2-graphene composite films consisting of nitrogen-doped graphene and ultrathin honeycomb-like MoS2 nanosheets. The composite has a unique film-foam-film hierarchical top-down architecture from the macroscopic to the microscopic and the nanoscopic scale, which helps rendering the composite material highly compact and leads to rapid ionic/electronic access to the active material, while also accommodating the volume variation of the sulfide upon intercalation/deintercalation of Li. The unique structural merits of the composite lead to enhanced lithium storage.