▎ 摘 要
Evolution of electronic inhomogeneities with back-gate voltage in graphene on SiO2 was studied using room temperature scanning tunneling microscopy and spectroscopy. Reversal of contrast in some places in the conductance maps and sharp changes in cross correlations between topographic and conductance maps, when graphene Fermi energy approaches its Dirac point, are attributed to the change in charge state of interface defects. The spatial correlations in the conductance maps, described by two length scales, and their growth during approach to Dirac point, show a qualitative agreement with the predictions of the screening theory of graphene. Thus a sharp change in the two length scales close to the Dirac point, seen in our experiments, is interpreted in terms of the change in charge state of some of the interface defects. A systematic understanding and control of the charge state of defects can help in memory applications of graphene.