▎ 摘 要
The Fe3O4/reduced graphene oxide (Fe3O4/RGO) nanocomposites with good dispersibility were synthesized for targeted delivery of paclitaxel (PTX). Firstly, the superparamagnetic Fe3O4/functional GO nanocomposites were prepared via hydrothermal method in which GO sheets were modified by surfactant wrapping. The Fe3O4/RGO nanocomposites were successively prepared through the reduction of graphene oxide. The products were investigated by Fourier-transform infrared spectrum, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and vibration sample magnetometry. It was found that spherical Fe3O4 nanoparticles were uniformly anchored over the RGO matrix and the nanocomposites were superparamagnetic with saturation magnetization (Ms) of 9.39 emu/g. Then PTX was loaded onto Fe3O4/RGOnanocomposites, and the drug loading capacity was 67.9%. Cell viability experiments performed on MCF-7 demonstrated that the Fe3O4/RGO-loaded PTX (Fe3O4/RGO/PTX) showed cytotoxicity to MCF-7, whereas the Fe3O4/RGO displayed no obvious cytotoxicity. The above results indicated that Fe3O4/RGO/PTX nanocomposites had potential application in tumor-targeted chemotherapy.