• 文献标题:   Vertically-oriented graphene-boron nitride skeletons using graphene oxide as inorganic adhesives for high-efficiency thermal conduction of polymeric composites with electrical insulation and compressibility
  • 文献类型:   Article
  • 作  者:   ZHANG JA, WANG H, ZHANG TX, SUN XY, MENG Y, MA CQ, ZHANG TY, LU N, LIU C, ZENG Y
  • 作者关键词:   graphene other 2dmaterial, hybrid composite, thermal propertie, multifunctional propertie, thermal interface material
  • 出版物名称:   COMPOSITES SCIENCE TECHNOLOGY
  • ISSN:   0266-3538 EI 1879-1050
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.compscitech.2023.109915 EA JAN 2023
  • 出版年:   2023

▎ 摘  要

Polymer-based thermal interface materials (TIMs) with high thermal conductivity are in high demand for rapid heat transfer between electronic components. It is still challenging to achieve significant enhancement in thermal conductivity of polymeric composites while maintaining satisfactory electrical insulation and good compress-ibility. In this work, we have developed a vertically-oriented graphene-boron nitride (GNP-BN) skeleton using graphene oxide (GO) as inorganic adhesives through ice-templating method, and vacuum-infiltrated with pol-ydimethylsiloxane (PDMS) to fabricate GNP-BN/PDMS composites. The 5.2 wt% GNP-BN/PDMS composites exhibited high-efficiency thermal conduction (through-plane thermal conductivity of 1.16 W m-1 K-1 and enhancement efficiency as high as 104.7%), satisfactory electrical insulation (volume resistivity of over 108 omega cm), and good compressibility (compressive modulus as low as 1.47 MPa). Such high performance is mainly attributed to the high-efficiency heat transfer pathway, low interfacial thermal resistance between components, effective hindrance to long-distance electron transport, and easy deformation of porous skeletons. The GNP-BN/ PDMS composites show great potential to be used as high-performance TIMs in the field of electronic devices.