▎ 摘 要
Supercapacitor is an important energy storage device. Nature of electrode material plays an important role in the performance of supercapacitor. Carbon, metal oxide, and conducting polymer-based materials are being used as electrode materials. Each type of material has its own advantages and disadvantages. To improve the energy density and cycle life performance of conducting polymer, in this work, metal oxide (TiO2) and carbon (sulfonated graphene oxide) materials were incorporated on to polyaniline. Presence of polyaniline, titanium dioxide, and sulfonated graphene oxide in the composite material was supported by Fourier transform infrared, XRD, FE-SEM, and EDAX techniques. Composite material of nanorods with sphere morphology in excellent yield and reasonably good conductivity was obtained. Electrochemical performances of the composite material were carried by cyclic voltammetry, charge-discharge, and impedance measurements. Composite material showed much better performances than that of its individual components in terms of specific capacitance, energy density, power density, and cycle life.