▎ 摘 要
Laminar graphene nanosheets have raised passionate attention due to their incredible physico-chemical properties. Its wide-scale, high-yield production at low-cost has made it possible to produce top class promising versatile polymer nanocomposites. Reduced graphene oxide (RGO) nanosheets were incorporated to prepare optically tunable and high mechanical strength polymer nanocomposite films. RGO-doped poly(vinyl alcohol) (PVA) nanocomposite films were prepared via solution casting. Low level RGO doping significantly altered the structural, optical and mechanical properties of pure PVA films. Most of the band structure parameters like direct/indirect band gap, band tail, refractive index, dielectric constant, optical conductivity and dispersion parameters were investigated in detail for the first time. Tauc's, Wemple-DiDomenico, Helpin-Tsai and mixture rule models were employed to investigate optical and mechanical parameters. The applied models reinforced the experimental results in the present study. Advanced analytical techniques were engaged to characterize the nanocomposites films.