▎ 摘 要
The quasi-2D electrons in graphene behave as massless fermions obeying a Dirac-Weyl equation in the low-energy regime near the two Fermi points. The stability of spin-polarized phases (SPP) in graphene is considered. The exchange energy is evaluated from the analytic pair-distribution functions, and the correlation energies are estimated via a closely similar four-component 2D electron fluid which has been investigated previously. SPPs appear for sufficiently high doping, when the exchange energy alone is considered. However, the inclusion of correlations is found to suppress the spin-phase transition in ideal graphene. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.