▎ 摘 要
We theoretically study the transport of electronic waves through a graphene sheet applied by a random voltage pattern in which the magnitudes and/or the widths of the voltages are random. When the magnitudes of the voltages exceed the electronic energy, the applied region can be considered as left-handed (LH) layers. Compared to the disordered structures with right-handed (RH) layers only, the spectra of the (average) density of states and the localization lengths in mixed random structures with RH and LH layers all show the suppression of Anderson localization, owing to the phase compensation effect of LH layers that reduces the long-range interference in the random system. (c) 2012 Elsevier B.V. All rights reserved.