• 文献标题:   3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors
  • 文献类型:   Article
  • 作  者:   ZHAI T, WANG FX, YU MH, XIE SL, LIANG CL, LI C, XIAO FM, TANG RH, WU QX, LU XH, TONG YX
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Sun Yat Sen Univ
  • 被引频次:   182
  • DOI:   10.1039/c3nr01589k
  • 出版年:   2013

▎ 摘  要

In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm(-2)) delivered a large areal capacitance of 3.18 F cm(-2) (234.2 F g(-1)) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm(-2)) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm(-3). Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10 000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density.