• 文献标题:   High-Performance Aqueous Zinc-Ion Batteries Enabled by Binder- Free and Ultrathin V2O5-x@Graphene Aerogels with Intercalation Pseudocapacitance
  • 文献类型:   Article
  • 作  者:   CHEN FY, LUO HR, LI M, ZHENG YJ, ZHOU MQ, GUI H, XIANG YS, XU CH, LI XL, WANG RH
  • 作者关键词:   rechargeable zincion batterie, 3d graphene conductive network, diffusion kinetic, ionstorage mechanism
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1021/acsami.2c14153 EA NOV 2022
  • 出版年:   2022

▎ 摘  要

As a result of the absence of solid-state diffusion limitation, intercalation pseudocapacitance behavior is emerging as an attractive charge-storage mechanism that can greatly facilitate the ion kinetics to boost the rate capability and cycle stability of batteries; however, related research in the field of zinc-ion batteries (ZIBs) is still in the initial stage and only found in limited cathode materials. In this study, a novel V2O5-x@rGO hybrid aerogel consisting of ultrathin V2O5 nanosheets (similar to 1.26 nm) with abundant oxygen vacancies (Vo'') and a three-dimensional (3D) graphene conductive network was specifically designed and used as a freestanding and binder-free electrode for ZIBs. As expected, the ideal microstructure of both the material and the electrode enable fast electron/ion diffusion kinetics of the electrode, which realize a typical intercalation pseudocapacitance behavior as demonstrated by the simulation calculation of cyclic voltammetry (CV), ex situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and first-principles density functional theory (DFT) calculation. Thanks to the elimination of solid-state diffusion limitation, the V2O5-x@rGO electrode delivers a high reversible rate capacity of 153.9 mAh g-1 at 15 A g-1 and 90.6% initial capacity retention at 0.5 A g-1 after 1050 cycles in ZIBs. The intercalation pseudocapacitance behavior is also realized in the assembled soft-pack battery, showing promising practical application prospects.