• 文献标题:   Ultracompressible, High-Rate Supercapacitors from Graphene-Coated Carbon Nanotube Aerogels
  • 文献类型:   Article
  • 作  者:   WILSON E, ISLAM MF
  • 作者关键词:   supercapacitor, ultracompressible, carbon nanotube, graphene, aerogel
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Carnegie Mellon Univ
  • 被引频次:   49
  • DOI:   10.1021/acsami.5b01384
  • 出版年:   2015

▎ 摘  要

Emerging applications for electrochemical energy storage require devices that not only possess high power and energy, but also are capable of withstanding mechanical deformation without degradation of performance. To this end, we have constructed electric double layer capacitors (EDLCs), also referred to as supercapacitors, using thick, ultracompressible graphene-coated carbon nanotube aerogels as electrodes. These electrodes showed a high capacitance in both aqueous and room-temperature ionic liquid (RTIL) electrolytes, achieving between 60 and100 F/g, respectively, with the performance stable over hundreds of charge/discharge cycles and at high rates exceeding 1 V/s. This performance was retained fully under 90% compression of the systems, allowing us to construct cells with high volumetric capacitances of similar to 5-18 F/cm(3) in aqueous and RTIL electrolytes, respectively, which are 50-100 times higher than comparable compressible EDLCs (similar to 0.1 F/cm(3)). Further, the volumetric capacitances approach values reported for compressible pseudocapacitors (similar to 15-30 F/cm(3)) but without the degraded lifetime and reversibility that typically plague compressible pseudocapacitors. The electrodes demonstrated largely strain-invariant ion transport with no change in capacitance and high-rate performance even at 90% compressive strain. This material serves as an excellent platform for exploring the possibility for use of extremely compressible EDLCs with negligible degradation in capacitance in applications such as electric vehicles and wearable electronics.