▎ 摘 要
In the present study, a novel plasmonic sensing platform was proposed for sequential colorimetric detection of dopamine (DA) and glutathione (GSH) in human serum sample by taking advantage of plasmon hybridization in graphene nanoribbons/sliver nanoparticles (GNR/Ag NPs) hybrid. DA was detected based on etching strategy and morphology transition of label-free Ag NPs hybridized with GNR. As a result of the etching process, hexagonal Ag NPs were changed to smaller corner-truncated nanoparticles and a blue shift was observed in its plasmonic band, accompanied by the color change from green to red. Sequentially, GSH induced aggregation of Ag NPs which resulted in a decrease in absorption intensity of Ag NPs plasmonic band and a color change from red to gray. By employing GNR/Ag NPs hybrid as a sensitive colorimetric sensor, DA and GSH were successfully detected in low concentrations of 0.04 mu M and 0.23 mu M, respectively. The same experiment was carried out in the absence of GNR and the detection limits were obtained 0.46 and 1.2 mu M for DA and GSH, respectively. These results confirmed the effective role of GNR on the sensitivity improvement of GNR/Ag NPs hybrid. The proposed simple and sensitive sensing approach offered a beneficial and promising platform for sequential detection of DA and GSH in the biological samples. (C) 2020 Elsevier B.V. All rights reserved.