• 文献标题:   Fluorescence sensing of protein-DNA interactions using conjugated polyelectrolytes and graphene oxide
  • 文献类型:   Article
  • 作  者:   PALLARES RM, SUTARLIE L, THANH NTK, SU XD
  • 作者关键词:   graphene oxide, conjugated polyelectrolyte, transcription factor, proteindna interaction, estrogen receptor, forster resonance energy transfer
  • 出版物名称:   SENSORS ACTUATORS BCHEMICAL
  • ISSN:   0925-4005
  • 通讯作者地址:   ASTAR
  • 被引频次:   5
  • DOI:   10.1016/j.snb.2018.05.105
  • 出版年:   2018

▎ 摘  要

Protein-DNA binding, particularly transcription factor-DNA binding, is one of the main molecular interactions involved in gene regulation. These interactions are sequence-specific, play a key role in many fundamental biological processes, and are deregulated in the pathogenesis of several diseases. In this study, a robust analytical bioassay to characterize protein-DNA binding was built by combining the optical properties of water soluble conjugated polyelectrolytes, and graphene oxide's superquenching capabilities. Cationic conjugated polyelectrolytes bind strongly to double stranded DNA through electrostatic interactions, and provide fluorescent signals to track the DNA without any chemical modification. In addition, the labeled DNA retains its protein binding ability. An important oncogenic transcription factor (i.e. estrogen receptor alpha) used to demonstrate the concept, and two collaborative factors involved in the estrogen gene transcription (i.e. forkhead box A1 and activating enhancer binding protein 2 gamma) were employed as controls. This method overcame the main limitations of previous nanomaterial-based bioassays, while keeping the sensitivity and precision of the gold standard techniques. These benefits, combined with the high versatility and low-costs, could lead this bioassay to be used in several fundamental biomedical research lines, such as large scale protein-DNA binding studies and drug discovery.