▎ 摘 要
We study quantum phase transitions in graphene superlattices in external magnetic fields, where a framework is presented to classify multiflavor Dirac fermion critical points describing hopping-tuned topological phase transitions of integer and fractional Hofstadter-Chern insulators. We argue and provide numerical support for the existence of transitions that can be explained by a nontrivial interplay of Chern bands and van Hove singularities near charge neutrality. This work provides a route to critical phenomena beyond conventional quantum Hall plateau transitions.