• 文献标题:   Switchable and Dual-Tunable Multilayered Terahertz Absorber Based on Patterned Graphene and Vanadium Dioxide
  • 文献类型:   Article
  • 作  者:   LIU HY, WANG PP, WU JL, YAN X, YUAN XG, ZHANG YG, ZHANG X
  • 作者关键词:   multilayered, switchable, dualtunable, terahertz, patterned graphene, phasechange material vanadium dioxide
  • 出版物名称:   MICROMACHINES
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   5
  • DOI:   10.3390/mi12060619
  • 出版年:   2021

▎ 摘  要

In this paper, a switchable and dual-tunable terahertz absorber based on patterned graphene and vanadium dioxide is proposed and analyzed. By controlling the Fermi level of graphene and the temperature of vanadium dioxide, the device's function can be switched and its absorbing properties can be tuned. When the vanadium dioxide is in an insulator state, the device can be switched from near-total reflection (>97%) to ultra-broadband absorption (4.5-10.61 THz) as the Fermi level of graphene changes from 0 to 0.8 eV. When the vanadium dioxide is changed to a metal state, the device can act as a single-band absorber (when the Fermi level of graphene is 0 eV) and a dual-band absorber with peaks of 4.16 THz and 7.3 THz (when the Fermi level of graphene is 0.8 eV). Additionally, the absorber is polarization-insensitive and can maintain a stable high-absorption performance within a 55 degrees incidence angle. The multilayered structure shows great potential for switchable and tunable high-performance terahertz devices.