• 文献标题:   Collagen Functionalized With Graphene Oxide Enhanced Biomimetic Mineralization and in Situ Bone Defect Repair
  • 文献类型:   Article
  • 作  者:   ZHOU CC, LIU SK, LI JL, GUO K, YUAN Q, ZHONG AM, YANG J, WANG JC, SUN JM, WANG ZX
  • 作者关键词:   graphene oxide, collagen, bonelike apatite, biomimetic mineralization, simulated body fluid
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Huazhong Univ Sci Technol
  • 被引频次:   6
  • DOI:   10.1021/acsami.8b17636
  • 出版年:   2018

▎ 摘  要

Biomimetic mineralization using simulated body fluid (SBF) can form a bonelike apatite (Ap) on the natural polymers and enhance osteoconductivity and biocompatibility, and reduce immunological rejection. Nevertheless, the coating efficiency of the bonelike apatite layer on natural polymers still needs to be improved. Graphene oxide (GO) is rich in functional groups, such as carbonyls (-COOH) and hydroxyls (-OH), which can provide more active sites for biomimetic mineralization and improve the proliferation of the rat bone marrow stromal cells (r-BMSCs). In this study, we introduced 0%, 0.05%, 0.1%, and 0.2% w/v concentrations of GO into collagen (Col) scaffolds and immersed the fabricated scaffolds into SBF for 1, 7, and 14 days. In vitro environment scanning electron microscopy (ESEM), energy-dispersive spectrometry (EDS), thermogravimetric analysis (TGA), micro-CT, calcium quantitative analysis, and cellular analysis were used to evaluate the formation of bonelike 2 apatite on the scaffolds. In vivo implantation of the scaffolds into the rat cranial defect was used to analyze the bone regeneration ability. The resulting GO-Col-Ap scaffolds exhibited a porous and interconnected structure coated with a homogeneous distribution of bonelike apatite on their surfaces. The Ca/P ratio of 0.1% GO-Col-Ap group was equal to that of natural bone tissue on the basis of EDS analysis. More apatites were observed in the 0.1% GO-Col-Ap group through TGA analysis, micro-CT evaluation, and calcium quantitative analysis. Furthermore, the 0.1% GO Col Ap group showed significantly higher r-BMSCs adhesion and proliferation in vitro and more than 2-fold higher bone formation than the Col Ap group in vivo. Our study provides a new approach of introducing graphene oxide into bone tissue engineering scaffolds to enhance biomimetic mineralization.