• 文献标题:   Ultrahigh Performance Nanoengineered Graphene-Concrete Composites for Multifunctional Applications
  • 文献类型:   Article
  • 作  者:   DIMOV D, AMIT I, GORRIE O, BARNES MD, TOWNSEND NJ, NEVES AIS, WITHERS F, RUSSO S, CRACIUN MF
  • 作者关键词:   graphene, nanoengineered concrete, ultrahigh performance composite, water impermeable concrete
  • 出版物名称:   ADVANCED FUNCTIONAL MATERIALS
  • ISSN:   1616-301X EI 1616-3028
  • 通讯作者地址:   Univ Exeter
  • 被引频次:   10
  • DOI:   10.1002/adfm.201705183
  • 出版年:   2018

▎ 摘  要

There is a constant drive for development of ultrahigh performance multifunctional construction materials by the modern engineering technologies. These materials have to exhibit enhanced durability and mechanical performance, and have to incorporate functionalities that satisfy multiple uses in order to be suitable for future emerging structural applications. There is a wide consensus in the research community that concrete, the most used construction material worldwide, has to be engineered at the nanoscale, where its chemical and physiomechanical properties can be truly enhanced. Here, an innovative multifunctional nanoengineered concrete showing an unprecedented range of enhanced properties when compared to standard concrete, is reported. These include an increase of up to 146% in the compressive and 79.5% in the flexural strength, whilst at the same time an enhanced electrical and thermal performance is found. A surprising decrease in water permeability by nearly 400% compared to normal concrete makes this novel composite material ideally suitable for constructions in areas subject to flooding. The unprecedented gamut of functionalities that are reported in this paper are produced by the addition of water-stabilized graphene dispersions, an advancement in the emerging field of nanoengineered concrete which can be readily applied in a more sustainable construction industry.